
DISTRIBUTED REAL-TIME PROGRAMS: AN OPEN INTERNET
PROTOCOL FOR THE WORLD COMPUTER

Topology Inc.
www.topology.gg

ABSTRACT

We present Distributed Real-time Programs (DRP), an open peer-to-peer Internet
protocol to introduce RAM-like capabilities to the World Computer. To effectively
manage the vast number of real-time interactions among billions of users, the
World Computer needs a new Internet protocol capable of handling concurrent
operations with minimal latency and overhead, while preserving user autonomy
and privacy. Programs built with DRP are concurrently writeable in real time,
completely avoiding consensus overhead by leveraging the properties of Conflict-
free Replicated Data Types (CRDTs). They are identified as PubSub groups on an
open P2P network comprised of DRP nodes. They use hash graphs as causal logs,
granting them immunity to Sybil attacks with no involvement of financial incentives.
DRP specifies a set of methods for clients to indicate the actions they would like
to perform on a given DRP program. Utility, scalability, and security aspects, such
as snapshot, compaction, verifiability, access control, and equivocation tolerance,
are addressed. We refer to the DRP network as decentralized RAM, a new kind of
decentralized network powering distributed programs that are lock-free concurrent.
Programs on the DRP network can interoperate with blockchains and open standards
at other layers of the computing stack, advancing the landscape of world-scale
distributed computing and becoming a key building block at the foundation of the
world computer.

Keywords CRDTs · hash graphs · Byzantine fault tolerance · peer-to-peer networks · threshold
logical clock

1 Introduction

Multi-user applications on the Internet largely rely on centralized intermediaries to mediate user
interactions. While this architecture has seen tremendous success, it suffers a number of problems.
Intermediaries dictate who can access what applications when and how, limiting user agency and
autonomy. Interoperability among applications is rarely possible because most intermediaries
operate on the business model of building and protecting their own network effects.

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

The idea of the world computer is to create a single programmable medium where code and
data live and operate correctly forever without centralized intermediaries, enabling trustless and
censorship-resistant interaction at global scale. The world computer should possess the following
properties:

1. Operate on decentralized networks.

2. Be horizontally scalable.

3. Allow billions of participants in interact in real time at negligible costs.

4. Allow multi-user software to be deployed, discovered, and accessed, completely free of
censorship.

Blockchains laid the foundation for trust-minimized ownership and censorship-resistant multi-
player software on open decentralized networks. However, their reliance on Byzantine consensus
mechanisms creates limitations in both transaction speed and costs of transaction fees. Operating
under the strict serializability model, most modern blockchain networks require global coordination
among their geo-distributed nodes to reach consistency. Relying on global coordination over the
Internet makes the transaction speed of blockchains heavily communication-bound. To tolerate
Byzantine faults, most modern blockchains employ Sybil countermeasures that involve the staking
of cryptocurrencies by validator nodes, and the incentivization of such act [1, 2]. Transaction fee
distribution is the common source of income for validators that is more stable and predicable than
inflation. Yet, the necessity to compensate validators through transaction fees imposes a minimum
threshold on transaction costs. If transaction fees fall below a certain level, validators may find
their incentives to participate in the network significantly diminished, potentially compromising the
network’s security.

Various approaches to the blockchain scalability problem exist, yet none of them address the funda-
mental issue of coordination costs. One approach is to endow each application with its own network
[3, 4]. However, the transaction throughput of each network remains heavily communication-bound.
Another approach is to batch total-ordered blocks of transactions at rollups and submit their commit-
ments and proofs on blockchains [5]. Yet, most rollups employ centralized servers for sequencing
transactions, an architecture that introduces additional trust assumption on the liveness of their
systems.

In this paper, we propose Distributed Real-time Programs (DRP), an Internet protocol dedicated
to applications that are real-time multiplayer, sovereign, and running on open P2P networks. The
design of the protocol leverages the concurrency, composability, and local-first [6] properties of
Conflict-free Replicated Data Types (CRDTs) [7]. The P2P network comprising of nodes that
implement the protocol functions as a decentralized “random access memory” — a distributed
state that is fast, ephemeral, sharded, and distributed as copies residing directly on end-user devices,
located alongside their computation capabilities. Interoperating with open standards and protocols
at other layers of the stack, DRP aims to become a fundamental component of the world computer
architecture.

The remainder of this paper is organized as follows. Section 2 introduces the concept of DRP
Objects. Section 3 discusses the use of hash graphs to ensure causal consistency and Byzantine fault
tolerance. Section 4 explores concurrency semantics and the resolution of conflicts in DRP Objects.
Section 5 presents the signaling mechanism, enabling DRP Objects to interact reliably. Section 6

2

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

examines invariant preservation techniques. Section 7 provides a basic example to illustrate DRP’s
expressivity. Section 8 presents the interaction methods within the protocol. Sections 9 through
12 cover the operation lifecycle, access control, finality, and mechanisms for snapshotting and
compaction. Section 13 addresses security considerations, followed by Section 14, which introduces
the notion of decentralized RAM as a broader conceptual framework. We conclude the paper in
Section 15.

2 DRP Objects

DRP Objects are composable programmable objects that can be (1) updated in real time concurrently,
and (2) subscribed to by interested parties individually on the open P2P network comprising of DRP
nodes.

Each DRP Object has an instance of a DRP. The DRP has two main components:

1. States: States is typed with either a built-in type of the programming language in use, or
another DRP through class composition.

2. Functions: A function may read and monotonically mutate (i.e., inflate) the states.

Developers can create blueprints in their programming language of choice.

3 Causal ordering

To further enhance the expressivity of DRP Objects, we introduce causal ordering among their
operations. Causal order is a partial order that can be enforced in a distributed system without
coordination. This differs from the total order in systems that offer strict serializability, which
requires coordination. Given an operation history of a DRP Object, its state is derived from applying
the operations in a linear order obtained from topological sort that preserves the causal order.

Approaches such as vector clocks and version vectors exist for capturing causality in distributed
systems. However, these approaches are vulnerable to equivocation, making them unsafe in the
presence of Byzantine actors. We need a way to provide causal ordering while tolerating Byzantine
faults.

3.1 Hash graphs

We propose a solution based on hash graphs [8, 9, 10, 11]. The hash graph approach works
by encoding an operation history in a directed acyclic graph, where the edges represent causal
dependency reporting among the operations, and vertices contain both operations and the hashes of
their causal dependencies.

Notationally:

1. Let u be an update operation. Given two operations u1 and u2, if u2 reported u1 as its causal
dependency, u2 must have happened-after u1. In the corresponding hash graph, there is an
arrow pointing from u1 to u2, or u1 → u2.

2. Let h(·) be a suitable hash function.

3

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

3. Let F be the hash graph’s frontier, or the set of vertices whose operations are currently not
the dependencies of any other operation. Let F∗ be the hashed frontier, or {h(v)|v ∈ F}.

4. Let Φ be the hash graph’s root vertex, or the vertex who does not causally depend on any
other vertex.

5. For an operation, let D be the set of hashed vertices that are its causal dependencies. For a
newly generated operation u, its D equals F∗ at the time of generation.

6. Attached to the root vertices of a hash graph is the initial state of the DRP Object, or its
state before applying any of the operations in the hash graph.

We can then define a vertex V of a hash graph as the tuple V = (u,D). The collision resistance of
h(·) ensures that the hash graph contains no cycles. Figure 1 shows an example of a hash graph.

Figure 1: A hash graph of a DRP Object for illustration purposes. Given this hash graph, vertex
V7 = (u7, {h(V3), h(V5)}). The vertices in the frontier F = {V6, V7, V8} are circled. There is one
root vertex, Φ, which carries a null operation. For the next vertex to be added to the graph, V9, its
causal dependencies should be F∗ = {h(V6), h(V7), h(V8)}. The initial state of this DRP Object is
S0.

Using this approach, when two nodes synchronize their operation histories of the same DRP Object,
they effectively merge their hash graphs. Having matching F∗ implies having equivalent hash graphs.
When an honest node receives a vertex, if not all of its reported causal dependencies are recognized,
the node start a sync process to resolve the unknown dependencies.

As another example, consider a distributed system comprising node A and B, separated by a network
delay of 40 ms. Both nodes start from the same root vertex Φ. Each node generates 60 operations
per second (≈16.6 ms between consecutive operations). Operations propagate through the network
to the other node and get merged into their hash graph. No consensus overhead is incurred in the
process. Figure 2 shows the hash graphs at node A immediately before and after A generates vertex
A5.

This approach is immune to Sybil attacks. As long as honest nodes form a connected subgraph
in the P2P network, the system is able to function correctly. This allows DRP Objects to tolerate
arbitrarily many Sybil actors, hence the immunity. In contrast, systems with global Byzantine
consensus functions correctly only if at most one third of the nodes are faulty.

4

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

Figure 2: The hash graphs of node A immediately before and after A generates vertex A5. Node A
has not learned about the grayed out vertices, B4 and B5.

3.2 Concurrency semantics

Equipped with causal ordering, we now have a notion of concurrency. Two operations can be
comparable (i.e. one happened after the other) or incomparable (i.e. they are concurrent to each
other). For operations that happened concurrently but do not commute, the order at which they are
serialized and executed impacts the state of the DRP Object. The concurrency semantics of a DRP
Object define its behavior in the presence of concurrent operations that do not commute.

Figure 3: A hash graph for DRP Object that holds a single integer and accepts addition and
multiplication.

Consider a DRP Object that holds a single integer and accepts two types of operations:

1. Add(x): adds x to the current value

2. Mul(x): multiplies the current value by x

However, integer addition and multiplication do not commute. Figure 3 shows a hash graph for this
register. We can see two possible execution orders:

1. (1 + 7) ∗ 3 + 2 = 26

2. (1 ∗ 3) + 7 + 2 = 12

5

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

To resolve this ambiguity, a valid semantics can be introduced: addition goes first. With this rule,
every honest replica of this hash graph would arrive at 26 as its final state.

Note that there are many possible semantics that are equally valid. The rules of thumb for choosing
the right semantics are:

1. They should be deterministic.

2. They should preserve user intent as much as possible. In other words, the semantics should
lead to program behaviors that make the most sense for users who interact with the program
concurrently.

4 Signaling

Having established how individual DRP Objects function, we now turn to how these objects interact
with each other. DRP Objects interact by signaling, a DRP Object-level term to differentiate from
messaging at the network layer.

A signal:

1. originates from an operation, called source operation, at an honest node that generates it, in
the sender DRP Object;

2. materializes into an operation, called destination operation at an honest node in the receiver
DRP Object.

The signaling mechanism provides the atomicity guarantee: these two operations, across the sender
and receiver objects, either get created together, or they don’t get created at all. In this way, DRP
signaling operates more like Inter-Blockchain Communication (IBC), ensuring synchronized state
updates across distributed objects, rather than the traditional API model that relies on asynchronous
request-response interactions.

In the current design, the following steps are involved for node A in DRP X to send a signal to DRP
Y :

1. A subscribes to Y to obtain its hash graph.

2. A cryptographically signs and broadcasts a message M to its peers in Y , denoted as PY .
M ’s payload expresses A’s intent to generate a vertex in X containing the source operation,
as well as a vertex in Y containing the destination operation.

3. Each node in PY verifies M ’s signature. Each of them then subscribes to X to obtain its
hash graph, in order to verify the causal dependencies of the two vertices contained in M ,
as well as A’s permission for generating these vertices.

4. If no verification failed, each node in PY signs and send an acknowledgement message
directly to A.

5. When A receives valid acknowledgement messages from everyone in PY , A acknowledges
back to them. A also proceeds with adding the source vertex in its hash graph of X .

6. Nodes in PY , hearing from A, proceed with adding the destination vertex in their hash
graphs of Y .

6

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

Figure 4: Hash graphs of DRP Objects X , Y , Z interacting by signaling (initial states are omitted).
Signals are denoted as dotted arrows. Cross-object dependencies are denoted as dashed pointers.
The vertices enclosed in circles are where signals are originated from. The vertices enclosed in
squares are where the signals materialize into. In this example, the vertex pair (X4, Y6) is atomically
generated by a signal, and the same for (Y7, Z2). The causal dependencies of Y6 is X2, X3, and Y3.
The causal dependencies of Z2 is Y4, Y5, Y6, and Z1.

Figure 4 illustrates a signal diagrammatically, where the signal “glues” together its originating
operation on the sender side and the operation it materializes into on the receiver side.

5 Invariants

Besides composability, preservation of invariants of all kinds is crucial for DRP Objects to be
richly expressive. An invariant in a distributed system is a predicate over the system state or state
transitions that is always true, observed at any of its replicas. Consider two types of invariants:

1. Numeric invariants. For example, a numeric invariant required for cryptocurrency applica-
tions is that an account balance is nonnegative at all times. This invariant could break down
when we allow concurrent updates to the same account — a shared wallet with $1 left, spent
concurrently by Alice and Bob.

2. Integrity invariants. For example, referential integrity requires that if there is a pointer from
object A to B, B must be valid. This invariant is compromised when a new reference to B is
added while B is invalidated concurrently.

Common approaches to preserving such invariants include:

1. Reservation. Reservation assigns each replica the right to perform certain operations in
advance [12]. For example, a wallet of an initial balance $2N may give Alice and Bob each
the right to spend exactly $N.

2. Compensation. Compensation repairs the violation of invariants by performing additional
operations [13]. Using the same wallet example, when a replica detects a negative balance,
it may generate a compensation operation that invalidates one or some of the latest spend
operations following a deterministic policy, restoring the account balance back to nonneg-
ative. All honest replicas follow the same policy, guaranteeing convergence. In the case

7

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

of referential integrity, when a replica detects the invalidated object B was concurrently
referred to by another operation, it may generate a compensation operation that restores the
validity of object B but sets its content to null.

In the current design, the developer of a DRP Object is given the option to use the invariance
preservation mechanics provided by the protocol. To use it, the developer specifies a set of
invariants, along with a set of fixer functions to repair the violation of each of them by generating
compensating operations. Upon DRP state changes, the new state is automatically checked against
the provided invariants. At invariant violation, the associated fixer function is invoked to repair it.

6 Examples

In this section, we provide a basic example to illustrate the expressivity of DRP Object: a social
graph.

Algorithm 1 shows the pseudocode of a blueprint named GMapGSet, which is a grow-only map
(GMap) where values are grow-only sets (GSets). When adding a key-value pair to it, the pair is
inserted into the map if the key is absent, otherwise the value is added to the GSet corresponding to
the key in the map.

Algorithm 1 GMapGSet
state:

map : Map<any ⇒ Set>

function Add (k : any, v : any)
if k /∈ map ⇒ map.insert(k, {v})
else ⇒ map[k].add(v)

function Get (k : any) →Set<any>
return map[k]

We can build a basic social graph with this blueprint. Algorithm 2 shows the pseudocode of a DRP
Object named SocialGraph, which uses:

1. a grow-only set (GSet) to store user public keys;

2. a two-phase set (2PSet) to store posts;

3. a GMapGSet (from Algorithm 1) to store the timestamps when users are added.

7 Interaction methods

DRP defines a set of methods, or verbs, for nodes to interact with a given DRP Object. At the
core of the protocol is the PubSub model for nodes in P2P networks to subscribe to DRP Objects
and publish updates on them asynchronously. DRP Objects are identified as PubSub groups or
topics. Nodes only subscribe to DRP Objects they are interested in. This keeps DRP Objects loosely
coupled and helps reduce resource requirements for operating nodes. In contrast, to update the state

8

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

Algorithm 2 SocialGraph
state:

Users : GSet<User> ▷ GSet is a blueprint
Posts : 2PSet<Post> ▷ 2PSet is a blueprint
UserT imestamps : GMapGSet ▷ GMapGSet is from Algorithm 1

function AddUser (userPublicKey : User, timestamp : Timestamp)
Users.Add(userPublicKey)
UserT imestamps.Add(userPublicKey, timestamp)

function AddPost (post : Post)
Posts.Add(post)

function RemovePost (post : Post)
Posts.Remove(post)

function GetUsers () →Set<User>
return Users.Set

function GetPosts () →Set<Post>
return {

p,∀p ∈ Posts.Set ∧ p.user ∈ Users.Set
∧ p.timestamp > UserT imestamps.Get(p.user).max()

}
▷ the post needs to be (1) present in the Posts set,

▷ (2) added by a recognized user after the user was added

of any smart contract on a typical blockchain, participants must synchronize and process all contract
activity across the network. Figure 5 illustrates the interaction pattern of DRP objects.

The set of core interaction methods and their semantics is as follows:

1. CREATE: to create a new DRP Object. Under the hood, a PubSub group (topic) is created
for the new DRP Object.

2. UPDATE: to perform an update operation on a given DRP Object. The update is published
to the corresponding PubSub group.

3. SUBSCRIBE: to subscribe to all updates performed on a given DRP Object. The node adds
the corresponding PubSub group to its groups of interest.

4. UNSUBSCRIBE: to unsubscribe and stop receiving updates on a given DRP Object. The
node removes the corresponding PubSub group from its groups of interest.

5. SYNC: to reconcile the differences in hash graphs of a given DRP Object between the
local one and a remote one. The SYNC method has two main purposes: for a new node
to bootstrap into an existing DRP Object, and as an out-of-band synchronization method
besides P2P gossiping.

9

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

Figure 5: Alice, Bob, and Charlie are subscribed to DRP Object D. Alice, Bob, Dave, and Eve are
subscribed to DRP Object B. All nodes are connected peer-to-peer.

8 Operation life cycle

The life cycle of a DRP Object operation differs significantly from a blockchain transaction.

• Every node that participates in a DRP Object keeps a copy of its hash graph locally.

• When a node performs a write (update) on the object, it generates an operation, which is
added to the hash graph immediately.

• A node computes the DRP Object state by linearizing its local hash graph and applying the
operations in that order.

• If a node performs a write and a subsequent read immediately, the read is guaranteed to
observe the write.

In other words, DRP Object provides high responsiveness, where local operations are instantly
effective [14]. In contrast, a blockchain transaction becomes available only after it is included in a
block that is proposed, verified and acknowledged by a threshold amount of network participants.

9 Access control

Access control is important for multiplayer applications. Common access control models include
attribute-based [15] and role-based ones [16]. It gets tricky when a DRP Object’s access control
logic is specified within itself or another DRP Object, due to eventual consistency. What happens
when an operation that revokes the access role of a participant is concurrent to an operation generated
by the same participant that depends on having the very role assigned?

10

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

The core issue here is conflict resolution strategies that involve permission changes. A promising
solution is proposed in [17], where both permission roles or levels and the causal order among
operations are taken into account to topologically sort a hash graph. The solution works under the
assumption that participants with higher permission roles or levels are not attackers.

In the current design, Access Control Lists (ACL) are implemented by default for every DRP Object.
Each of these ACLs have 3 different groups:

1. Admins: the set of peers that are able to grant and revoke the permissions of any other
non-Admin peers. An Admin must specify the peer ID and the public key that identify a
peer to generate an operation that changes its permission. The public key can either be a
Ed25519 key, used for signing vertices upon generation, or a BLS key, used for signature
aggregation to decide on finality.

2. Finality Signers: the set of peers that can decide on the finality of the vertices in the DRP
Object’s hash graph.

3. Writers: the set of peers that are allowed to generate operations to update the DRP state. This
set is optional - for a permissionless DRP Object, this set is not used, allowing anyone to
write to the object. For a permissioned DRP Object, only the operations generated by peers in
the Writers set are accepted. The developer of a DRP Object controls its permissionless-ness
by setting a flag.

10 Finality

A vertex in an object’s hash graph is final if it is seen and validated by a threshold amount of
participants in the DRP Object. This amount is specified by the developer of the object, analogous
to a quorum in a voting system.

The ability to finalize the hash graphs of DRP Objects is beneficial in multiple ways:

1. External communication: the finalized parts of a hash graph can be transported to external
systems for further use.

2. Snapshot: Snapshots of the object state can be derived from finalized parts (covered in
Section 11).

3. Compaction: A node may consider pruning away vertices in the finalized parts (covered in
Section 12).

In the current design, every node that receives a new vertex from the network signs it with their
BLS key, and broadcasts the resulting signature. Nodes collect and aggregate these BLS signatures.
For a given vertex, a BLS signature that represents at least a threshold amount of valid signatures
over it is the proof that it is final. The validity of signatures depends on if the signer is among the
Finality Signer set.

11 Snapshot

A DRP Object snapshot is an object state that is derived from a finalized part of the object’s hash
graph. It can act as a "state save" that may be worth persisted (e.g., on IPFS [18] or any public
blockchain of choice).

11

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

In the current design, when performing a snapshot, a special vertex is added on top of the frontier
of a finalized part of the hash graph. This vertex carries no operation that mutates the object state.
The object state computed from the perspective of this vertex is a snapshot. Anyone can verify the
validity of this vertex’s finality, which is equivalent to the validity of the corresponding snapshot.

12 Compaction

Grow-only hash graphs are problematic. Unbounded memory is needed, and large graphs take
longer to bootstrap. Compaction is a mechanism to address this problem.

When a hash graph is compacted, an "old" portion of it gets pruned away. As this happens, a new
initial state is obtained by applying the operations in that portion on the previous initial state.

In the current design, each node is allowed to compact the finalized portion of their hash graph.
Specifically, at any moment, we call the frontier of this portion the final frontier. Vertices before the
final frontier can be dropped. The final frontier moves forward within the hash graph as fast as the
speed of finality. In this way, the memory requirement of participating in a DRP depends on the
number of vertices that sit between the final frontier and the actual frontier.

One implication of compaction is that a vertex that is generated by an honest node may be dropped
by other nodes, because the vertex’s dependencies are already dropped by them during compaction,
and thus become unrecognizable from their perspectives. Such a vertex becomes a stale vertex. This
can happen when there are clusters of nodes forming a majority of the DRP’s Finality Signer set,
from which an honest node is distant. The crux of the problem lies in the need for the originating
node of a stale vertex to learn about the staleness, such that it knows to generate the vertex anew. In
the current design, each node regularly synchronize with a random peer. Through synchronization,
a node gets to learn if any of its unfinalized vertex’s dependencies have been dropped by its peers.
It can then use such information to decide if the vertex is stale and requires regeneration.

Figure 6 illustrates the compaction process.

Figure 6: Compaction is performed on the finalized subgraph. Vertices on the final frontier are
marked with asterisks ∗. Vertices that are before the final frontier (A,B,C,D) are pruned away.

Snapshots that are derived from compacted hash graphs are verifiable:

1. The hash graph of a DRP Object is routinely compacted.

12

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

2. When compaction happens, the new initial state forms a snapshot.

3. This snapshot carries with it a proof that attests to its validity, which comes in two parts:

(a) compaction was performed correctly.
(b) the finality of vertices involved in the snapshot was valid;

For part (a) of the proof (compaction correctness), we can leverage recursive zero-knowledge proof
[19]. This may require the blueprint to be executable by a provable VM such as Cairo [20], RISC0
[21], or Valida [22]. The computation of the new initial state during compaction can be proven
recursively (i.e. "I know a subgraph of valid vertices that contain the operations to forward the
previous initial state to the new initial state"), yielding a recursive proof that sits alongside the
snapshot. For part (b) of the proof (finality validity), we can verify that the BLS signatures collected
on the frontier of the finalized subgraph are sufficient to finalize the subgraph.

13 Security

Security is a critical aspect of DRP Objects. We consider three threat models for DRP Objects and
explore potential solutions.

13.1 Hash graph pollution

Malicious actors may send invalid operations to pollute hash graphs. When receiving a new vertex,
a node can validate its operation before adding it to the local hash graph. The nodes that published
bad operations can be banned.

The validity of an operation depends on a number of factors:

• Signature is correct.

• The creator of the operation had the right permission.

• Applying the operation causes a mutation of the object state.

All these factors can be validated atomically. This means every honest node will reach the same
conclusion on the validity of every operation.

13.2 Equivocation

Equivocation occurs when a node, assumed to be a single-threaded process, generates concurrent
operations. An honest node can detect that another node has generated concurrent operations. The
honest node may choose to remove the corresponding bad vertices from its hash graph, ban the
Byzantine node, and expect all other honest nodes to do the same. However, downstream vertices
that causally depend on these bad vertices may have been generated. It is not obvious how to graft
these downstream vertices back to the hash graph.

13.3 Backdated dependencies

We consider this as the trickiest threat model: when nodes report dependencies that are older than
the vertices in the frontier. The question is how backdated dependencies can be reliably detected by

13

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

all honest nodes. A vertex carrying correct dependencies but arriving late due to network delays is
indistinguishable from a vertex with backdated dependencies.

The further study and mitigation of these security issues remain an active area of research.

14 Decentralized RAM

A compelling perspective on DRP is its ability to power a decentralized network that functions as a
decentralized RAM. The following properties of the protocol support this perspective:

1. Random access. Users can synchronize on any DRP Objects of interest without having
to synchronize every single DRP Object in the system, contrary to smart contracts on
blockchains. This access pattern reduces the resource requirement of running a DRP node,
making it more accessible for users to participate in the network.

2. Closeness to compute. We envision that most users of DRP Object-powered applications
will operate nodes on their devices, holding object replicas locally. In other words, the
protocol champions the principles of local-first software [6]. This approach reduces latency,
enhances privacy, and improves both scalability and resilience by "load-balancing" across
user devices. In contrast, most blockchain users access smart contracts via RPC nodes, not
unlike the common access pattern of cloud apps. This property is analogous to how random
access memory sits closer to the CPU in the memory hierarchy.

3. Ephemerality. The protocol expects the nodes to be ephemeral. Their states are volatile
from the system’s perspective, corresponding to the volatility of RAM. The data movement
between DRP nodes and persistence providers (e.g. blockchains) is analogous to the data
movement between RAM and disk storage, which is non-volatile.

Working with blockchains in concert, decentralized RAM has the potential to enable a new class
of decentralized applications that can operate more dynamically and responsively than purely
blockchain-based applications.

15 Conclusion

In this paper, we introduced DRP for P2P real-time multiplayer applications. CRDT is a natural
choice for such use cases, and the use of hash graphs allows capturing causality among operations
while tolerating Byzantine faults. DRP Object provides the programmability of common object
systems and encapsulates coordination-free replication strategies. DRP specifies a set of inter-
action methods for DRP Objects to be created, updated, subscribed to, unsubscribed from, and
synchronized. Their semantics correspond to behavior on the underlying P2P networks under the
publish/subscribe model. Snapshot, compaction, access control, and threat models of DRP Objects
were discussed. Nodes that implement DRP keep replicas of DRP Objects locally, facilitate persis-
tence without being primarily responsible for it, and disseminate DRP Object updates only to nodes
that are interested in them. As such, a P2P network comprised of such nodes effectively functions
as a decentralized RAM. Combining this RAM-like structure with blockchains, we reimagine the
architecture of the world computer.

14

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

Acknowledgments

The development of this work has been greatly enriched by the insights and support of many
individuals. We would like to express our gratitude to:

• Eli Ben-Sasson and Uri Kolodny, for supporting us in our endeavors to run scalable physics
simulations in a decentralized manner;

• Joon Yun, for pointing us toward the magic of CRDTs in the first place;

• Martin Kleppmann, for the discussions on the theory behind CRDTs and the mechanics and
threat models of hash graphs;

• Zaki Manian, for discussions on the solutions to P2P connectivity issues;

• Sina Habibian, for encouraging us to explore alternative distributed data structures on P2P
networks that provide different affordances from what blockchains offer;

• Polynya, for encouraging us to explore new software paradigms that promote the creative agency
of a broad audience, and to seek alternatives to the plutocracy and oligopoly that underlie the
correct functioning of all major blockchains;

• Jihoon Song and Kunho Kim, for the original discussions that motivated this paper;

• Jay Oak, for the pivotal input in shaping the scope and capabilities of the protocol and the
abundant feedback for improving this paper;

• Akash S M, for suggesting that we explain why concurrency semantics are important;

• Matthew Weidner, for pointing out the challenges in exercising access control under eventual
consistency, and a solution designed for the Matrix Protocol;

• Peter van Hardenberg, for pointing out the importance of invariant preservation and suggesting
that we add a representative example for discussing how constraints may be enforced in DRP
Objects;

• Pierre Semanne and Goblin Oats, for advocating against a global finality system shared by all
DRP Objects, an idea explored in the early drafts;

• haadcode, for reinforcing our concept of a decentralized RAM;

• Oskar Thorén and Anderson Chen, for carefully reviewing the early drafts and offering ideas for
improvement;

• Alok Vasudev and Adam Goldberg, for the patience and encouragement for us to focus on finding
the truth.

References

[1] Jae Kwon. Tendermint: Consensus without Mining. Cornell University, 2014.

[2] Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget. arXiv preprint
arXiv:1710.09437, 2017.

[3] Jae Kwon and Ethan Buchman. Cosmos: A Network of Distributed Ledgers. Tendermint,
2016.

15

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

[4] Maxim Orlovsky, Peter Todd, Giacomo Zucco, Federico Tenga, and Olga Ukolova. RGB
Blackpaper. 2023.

[5] Vitalik Buterin. An Incomplete Guide to Rollups. 2021.

[6] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-
first software: You own your data, in spite of the cloud. Ink Switch, 2019.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Replicated
Data Types. 2011.

[8] Martin Kleppmann and Heidi Howard. Byzantine Eventual Consistency and the Fundamental
Limits of Peer-to-Peer Databases. arXiv preprint arXiv:2012.00472, 2020.

[9] Martin Kleppmann. Making CRDTs Byzantine fault tolerant. In Proceedings of the 9th
Workshop on Principles and Practice of Consistency for Distributed Data, pages 8–15, 2022.

[10] Héctor Sanjuán, Samuli Pöyhtäri, Pedro Teixeira, and Ioannis Psaras. Merkle-CRDTs: Merkle-
DAGs meet CRDTs. arXiv preprint arXiv:2004.00107, 2020.

[11] Paulo Sérgio Almeida and Ehud Shapiro. The Blocklace: A Universal, Byzantine Fault-
Tolerant, Conflict-free Replicated Data Type. arXiv preprint arXiv:2402.08068, 2024.

[12] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo Rodrigues,
and Nuno Preguiça. Extending Eventually Consistent Cloud Databases for Enforcing Numeric
Invariants. In 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pages
31–36, 2015.

[13] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça. IPA:
Invariant-preserving Applications for Weakly-consistent Replicated Databases. Proc. VLDB
Endow., 12(4):404–418, dec 2018.

[14] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.
Highly available transactions: virtues and limitations. Proc. VLDB Endow., 7(3):181–192, nov
2013.

[15] Vincent C. Hu, D. Richard Kuhn, David F. Ferraiolo, and Jeffrey Voas. Attribute-based access
control. Computer, 48(2):85–88, 2015.

[16] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based
Access Control Models. Computer, 29(2), pages 38–47, 1996.

[17] Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein. Matrix decomposition:
Analysis of an access control approach on transaction-based dags without finality. In Proceed-
ings of the 25th ACM Symposium on Access Control Models and Technologies, page 81–92,
2020.

[18] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

[19] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’13, page 111–120, New York, NY, USA,
2013. Association for Computing Machinery.

[20] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete STARK-
friendly CPU architecture. Cryptology ePrint Archive, Paper 2021/1063, 2021.

16

Distributed Real-time Programs: an Open Internet Protocol for the World Computer

[21] Jeremy Bruestle, Paul Gafni, and the RISC Zero Team. RISC Zero zkVM: Scalable, Transpar-
ent Arguments of RISC-V Integrity, 2023.

[22] Valida. Valida: A STARK-based VM focused on code reuse, performance, and modularity.
Github repository, 2023.

17

	Introduction
	DRP Objects
	Causal ordering
	Hash graphs
	Concurrency semantics

	Signaling
	Invariants
	Examples
	Interaction methods
	Operation life cycle
	Access control
	Finality
	Snapshot
	Compaction
	Security
	Hash graph pollution
	Equivocation
	Backdated dependencies

	Decentralized RAM
	Conclusion

