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ABSTRACT

We present Topology Protocol, a distributed system protocol designed for the Open
Metaverse. The Open Metaverse is a programmable medium that enables real-time
multi-user, interoperable, and censorship-resistant applications on open decentralized
networks. To unlock a new phase of human productivity and collaboration, this new
medium requires a distributed system protocol that is credibly neutral and scalable.
It must support billions of equal participants interacting in real time at negligible
costs while preserving user autonomy and privacy — fundamental needs in human
interactions. To meet such requirements, we introduce a new abstraction called
Conflict-free Replicated Objects (CRO) and the concept of decentralized Random
Access Memory (dRAM). CROs are composable programmable objects that can
be subscribed to as PubSub groups on open P2P networks. They can be mutated
in real time concurrently while avoiding the costs of coordination, leveraging the
properties of Conflict-free Replicated Data Types (CRDTs). Hash graphs provide
CROs with causal ordering and immunity to Sybil attacks. The Topology Protocol
specifies methods for CRO interaction and their corresponding behavior on P2P
networks. Utility, scalability and security aspects such as snapshot, compaction,
verifiability, access control and equivocation tolerance are addressed. Nodes that
implement the Topology Protocol form an open ephemeral P2P network, maintaining
CRO states at the edge for immediate access, and in sync across all subscriber nodes.
Summarizing its capabilities, we refer to this P2P network as a dRAM, a new kind of
decentralized network powering distributed programs that are lock-free concurrent.
CROs on dRAM will be able to interoperate with blockchains and open standards
at other layers of the computing stack, advancing the landscape of world-scale
distributed computing and becoming a key building block at the foundation of the
Open Metaverse.

Keywords CRDTs · hash graphs · Byzantine fault tolerance · peer-to-peer networks · threshold
logical clock
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1 Introduction

Multi-user applications on the Internet largely rely on centralized intermediaries to mediate user
interactions. While this architecture has seen tremendous success, it suffers a number of problems.
Intermediaries dictate who can access what applications when and how, limiting user agency and
autonomy. Interoperability among applications is rarely possible because most intermediaries
operate on the business model of building and protecting their own network effects.

The Open Metaverse must operate on open decentralized networks [1]. The network architecture
should be horizontally scalable. It must allow billions of participants to interact in real time at
negligible costs. New multi-user software can be deployed, discovered, and accessed, completely
free of censorship. As such, the Open Metaverse is much broader than video games and will
maximize the freedom, creativity, and productivity of humanity on the Internet.

Blockchains laid the foundation for trust-minimized ownership and censorship-resistant multiplayer
software on open decentralized networks. However, their reliance on Byzantine consensus mecha-
nisms creates limitations in speed and costs. Operating under the strict serializability model, most
modern blockchain networks require global coordination among their geo-distributed nodes to
reach consistency. Yet, light only travels a few inches per clock cycle of a modern CPU. Relying
on global coordination over the Internet makes the transaction throughput of blockchains heavily
communication-bound. To tolerate Byzantine faults, most modern blockchains employ expensive
Sybil countermeasures [2, 3], creating price floors on transaction fees to pay node operators and
limiting these systems to financial use cases.

Various approaches to the blockchain scalability problem exist, yet none of them address the
fundamental issue of coordination costs. One approach is to shard the network by applications
[4, 5]. Another approach is to batch total-ordered blocks of transactions at rollups and submit their
commitments and proofs on blockchains [6]. However, the transaction throughput of each shard or
rollup remains heavily communication-bound.

In this paper, we sketch out a solution that leverages the concurrency, composability, and local-first
[7] properties of Conflict-free Replicated Data Types (CRDTs) [8]. We propose Topology Protocol,
a protocol dedicated to enabling applications that are real-time multiplayer, sovereign, and running
on open P2P networks. We introduce Conflict-free Replicated Objects (CRO), a new abstraction for
building multiplayer programs at ease and making them accessible on the P2P network. We explore
how CROs can be applied to social graphs for social media applications, and multiplayer physics
simulations with elastic collision constraints. We discuss various aspects that impact the flexibility,
scalability and security of CROs, including how they can produce verifiable compacted snapshots
for interacting with blockchains. Nodes that implement Topology Protocol form an ephemeral P2P
network that keeps CRO states next to local compute on the edge, effectively forming a decentralized
Random Access Memory (dRAM). Interoperating with open standards and protocols at other layers
of the stack, Topology Protocol aims to grow into the de facto distributed system protocol of the
Open Metaverse.

2 Conflict-free Replicated Data Types

Conflict-free Replicated Data Types (CRDTs) encapsulate coordination-free replication strategies
and expose the application programming interface (API) of ordinary data types. Replicas of the
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same CRDT can progress independently. They do not require locks for synchronization. Conflicts
caused by concurrent operations are automatically resolved by rules as part of the specification
of the type. As a result, all replicas are guaranteed to converge eventually without ever having to
coordinate.

CRDTs are expressive. One approach is to make complex CRDTs from scratch. Although notori-
ously tricky to get right, correct CRDTs exist for indexed sequence types [9, 10, 11, 12], XML [13],
and JSON [14]. Another approach is to make complex CRDTs through class composition. A class
whose fields are all typed by CRDTs, and whose methods access its fields only through the public
methods of their types, is itself a CRDT.

3 Conflict-free Replicated Objects

The primary abstraction of Topology Protocol is Conflict-free Replicated Object (CRO). CROs are
composable programmable objects that can be updated in real time concurrently and subscribed to
as publish/subscribe (PubSub) groups on open P2P networks.

Each CRO is an instance of a blueprint. A blueprint has two main components:

1. States: Each state is typed with either a built-in CRDT recognized by the protocol, or by
another blueprint through class composition.

2. Functions: A function may read and monotonically mutate (i.e., inflate) the states. All
function signatures are specified in the blueprint’s Application Binary Interface (ABI).

Additionally, a merge function must be defined for merging the states of an external replica with the
local states. This merge function must be commutative, associative, and idempotent for convergence
purposes. Developers can create blueprints in their programming language of choice. These
blueprints can then be compiled into suitable bytecode formats for execution by nodes implementing
the protocol.

4 Causal ordering

To further enhance the expressivity of CROs, we introduce causal ordering among their operations.
This ordering allows for more complex relationships between operations. Causal order is a partial
order that can be enforced in a distributed system without coordination. This differs from the total
order in systems that offer strict serializability, which requires coordination. Given an operation
history of a CRO, its state is derived from applying the operations in a linear order obtained from
topological sort that preserves the causal order.

Approaches such as vector clocks and version vectors exist for capturing causality in distributed
systems. However, these approaches are vulnerable to equivocation, making them unsafe in the
presence of Byzantine actors. We need a way to provide causal ordering while tolerating Byzantine
faults.

4.1 Hash graphs

We propose a solution based on hash graphs [15, 16, 17, 18]. The hash graph approach works
by encoding an operation history in a directed acyclic graph, where the edges represent causal
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dependency reporting among the operations, and vertices contain both operations and the hashes of
their causal dependencies.

Notationally:

1. Let u be an update operation. Given two operations u1 and u2, if u2 reported u1 as its causal
dependency, u2 must have happened-after u1. In the corresponding hash graph, there is an
arrow pointing from u2 to u1, or u2 → u1.

2. Let h(·) be a suitable hash function.
3. Let F be the hash graph’s frontier, or the set of vertices whose operations are currently not

the dependencies of any other operation. Let F∗ be the hashed frontier, or {h(v)|v ∈ F}.
4. Let O be the hash graph’s origin, or the set of vertices whose operations do not causally

depend on any other operation.
5. For an operation, let D be the set of hashed vertices that are its causal dependencies. For a

newly generated operation u, its D equals F∗ at the time of generation.
6. Attached to the origin of a hash graph is the original state of the CRO, or its state before

applying any of the operations in the hash graph.

We can then define a vertex of a hash graph as containing the tuple (u,D). The collision resistance
of h(·) ensures that the hash graph contains no cycles. Figure 1 shows an example of a hash graph.

Figure 1: A hash graph of a CRO for illustration purposes. Given this hash graph, vertex V7 should
contain (u7, {h(V3), h(V5)}). The vertices in the frontier F = {V6, V7, V8} are circled. The origin
O contains only one vertex, ⊥, which carries a null operation. For the next vertex to be added to the
graph, V9, its causal dependencies should be F∗ = {h(V6), h(V7), h(V8)}. The original state of this
CRO is S0.

Using this approach, when two nodes synchronize their operation histories of the same CRO, they
effectively merge their hash graphs. Having matching F∗ implies having equivalent hash graphs.
Operations whose reported causal dependencies are unrecognized by honest nodes will not be added
to their hash graphs.

As another example, consider a distributed system comprising node A and B, separated by a network
delay of 40 ms. Both nodes start from the same initial state, denoted by ⊥. Each node generates 60
operations per second (≈16.6 ms between consecutive operations), a standard frame rate for games,
and reconciles its hash graph with the other node as fast as the network conditions permit. Figure 2
shows the hash graphs at node A immediately before and after A generates vertex A5.
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Figure 2: The hash graphs of node A in a hypothetical system immediately before and after A
generates vertex A5. Node A has not learned about the grayed out vertices, B4 and B5.

This approach is immune to Sybil attacks. As long as honest nodes form a connected subgraph in
the P2P network, the system is able to function correctly. This allows CROs to tolerate arbitrarily
many Sybil actors, hence the immunity. In contrast, systems with global Byzantine consensus
functions correctly only if less than one third of the nodes are faulty. No expensive countermeasures
such as Proof of Work or Proof of Stake are involved, making the costs of transacting with CROs
practically zero.

4.2 Concurrency semantics

Equipped with causal ordering, we now have a notion of concurrency. Two operations can be
comparable (i.e. one happened after the other) or incomparable (i.e. they are concurrent to each
other). For operations that happened concurrently but do not commute, the order at which they are
serialized and executed impacts the CRO state. The concurrency semantics of a CRO define its
behavior in the presence of concurrent operations that are not commutative.

Figure 3: A hash graph for the register CRO that accepts addition and multiplication.

Consider a register CRO that holds a single integer and accepts two types of operations:

1. Add(x): adds x to the current value

2. Mul(x): multiplies the current value by x
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However, integer addition and multiplication do not commute. Figure 3 shows a hash graph for this
register. We can see two possible execution orders:

1. (1 + 7) ∗ 3 + 2 = 26

2. (1 ∗ 3) + 7 + 2 = 12

To resolve this ambiguity, we can introduce the following concurrency semantics to the CRO:
addition goes first in case of concurrency. With this rule, every honest replica of this hash graph
would arrive at 26 as its final state.

5 Signaling

Having established how individual CROs function, we now turn to how these objects interact
with each other. CROs interact by signaling, a CRO-level term to differentiate from messaging at
the network layer. A signal originates from an operation at the sender CRO. It then materializes
into an operation at the receiver CRO. For causality to work, a signal needs to specify its causal
dependencies in both the sender CRO and receiver CRO’s hash graphs. This means the node
that intends to send a cross-object signal needs to have the hash graphs of both the sender and
receiver CROs locally. This requirement creates challenges in scalability, as nodes must maintain
and synchronize multiple hash graphs simultaneously. The safety and scalability of cross-object
signaling remain an active area of research.

Figure 4 illustrates a cross-object signal diagrammatically, where the signal “glues” together its
originating operation on the sender CRO side and the operation it materializes into on the receiver
CRO side.

Figure 4: Hash graphs of CRO X , Y , Z interacting by passing signals (original states are omitted).
Cross-object signals are denoted as dotted arrows. Cross-object causal dependencies are denoted as
dashed pointers. The vertices where signals are originated are enclosed in circles, whereas those
on the receiving sides are enclosed in squares. In this example, the generation of vertex X4 also
produces a signal to object Y , materializing into vertex Y6. Signaling also occurred between vertices
Y7 and Z2. The causal dependencies of Y6 is X2, X3, and Y3. The causal dependencies of Z2 is Y4,
Y5, Y6, and Z1.
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6 Invariants

Besides composability, preservation of invariants of all kinds is crucial for CROs to be richly
expressive. An invariant in a distributed system is a predicate over the system state or state
transitions that is always true, observed at any of its replicas. Consider two types of invariants:

1. Numeric invariants. For example, a numeric invariant required for cryptocurrency applica-
tions is that an account balance is nonnegative at all times. This invariant could break down
when we allow concurrent updates to the same account — a shared wallet with $1 left, spent
concurrently by Alice and Bob.

2. Integrity invariants. For example, referential integrity requires that if there is a pointer from
object A to B, B must be valid. This invariant is compromised when a new reference to B is
added while B is invalidated concurrently.

Common approaches to preserving such invariants include:

1. Reservation. Reservation assigns each replica the right to perform certain operations in
advance [19]. For example, a wallet of an initial balance $2N may give Alice and Bob each
the right to spend exactly $N.

2. Compensation. Compensation repairs the violation of invariants by performing additional
operations [20]. Using the same wallet example, when a replica detects a negative balance,
it may generate a compensation operation that invalidates one or some of the latest spend
operations following a deterministic policy, restoring the account balance back to nonneg-
ative. All honest replicas follow the same policy, guaranteeing convergence. In the case
of referential integrity, when a replica detects the invalidated object B was concurrently
referred to by another operation, it may generate a compensation operation that restores the
validity of object B but sets its content to null.

7 Examples

In this section, we provide two examples that illustrate the expressivity of CRO.

7.1 Example 1

The first example is a social graph that demonstrates the composability of CROs. Algorithm 1
shows the pseudocode of a blueprint named GMapGSet, which is a grow-only map (GMap) where
values are grow-only sets (GSets). When adding a key-value pair to it, the pair is inserted into the
map if the key is absent, otherwise the value is added to the GSet corresponding to the key in the
map.

We can build a basic social graph on top of this CRO. Algorithm 2 shows the pseudocode of a
blueprint named SocialGraph, which uses a GSet to store user public keys, a two-phase set (2PSet)
to store posts, and instantiates the GMapGSet blueprint to store the timestamps when users are
added. Note that the timestamps in the signals AddUser and AddPost are reported by nodes
voluntarily, which can be faulty. In the next example, we drop these timestamps and leverage hash
graphs for causal ordering.
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Algorithm 1 GMapGSet
state:

Map : GMap<any⇒ GSet>

interface:
signal Add (k : any, v : any)
function Get (k : any)→ v : Set<any>

on signal Add
k /∈ map⇒ map.insert(k, v)
else⇒ map[k].add(v)

function Get
return map[k]

7.2 Example 2

The second example is a multiplayer physics simulation that demonstrates the compensation
technique and the use of hash graph. For simplicity, we construct a 2D space where players move
around in the form of circle objects that collide elastically with one another. These circle objects
have random radii and masses, whose values are determined when players join the space. The
physics state of each object contains a position vector and a velocity vector. The goal is to design a
blueprint that describes this construction.

We start by specifying two types of operations, Drive and Tick. Drive applies a change to the
velocity vector of an object. Tick advances the time of an object, which causes its position to change
by velocity times a constant time difference. Objects are driven and ticked only by the players that
control them.

Traversing a hash graph containing such operations, we can obtain for each player a sequence of
operations they generated. To compute the position of a particular player, we traverse their sequence
of operations, updating the velocity when we encounter a Drive operation, and updating the position
by adding a displacement to it when we encounter a Tick operation. The displacement is equal to
the product of the velocity and the constant time difference.

However, the above construction does not consider the elastic collision constraints. Geometrically, a
collision between two objects occurs when their shapes overlap. Equation 1 expresses the no-overlap
constraint for two circles i and j, where (x, y) refers to the center of a circle, and r refers to its
radius. Clearly, this is a numeric invariant that can be violated by concurrent positional changes of
the circles. Equation 2 expresses the elastic collision constraint between two circles i and j, where
their relative velocites along the normal direction before and after the collision are v−rel and v+rel
respectively, and e is a scalar representing the restitution coefficient.

(xi − xj)
2 + (yi − yj)

2 ≥ (ri + rj)
2 (1)

v+rel = −e · v
−
rel (2)
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Algorithm 2 SocialGraph
state:

Users : GSet<User> ▷ Grow-only set; built-in
Posts : 2PSet<Post> ▷ Two-phase set; built-in
UserT imestamps : GMapGSet ▷ The blueprint from Algorithm 1

interface:
signal AddUser (userPublicKey : User, timestamp : Timestamp )
signal AddPost (post : Post)
signal RemovePost (post : Post)
function GetUsers ()→Set<User>
function GetPosts ()→Set<Post>

on signal AddUser
Users.Add(userPublicKey)
UserT imestamps.Add(userPublicKey, timestamp)

on signal AddPost
Posts.Add(post)

on signal RemovePost
Posts.Remove(post)

function GetUsers
return Users.Set

function GetPosts
return {

p,∀p ∈ Posts.AddSet ∧ p ̸∈ Posts.RemoveSet ∧ p.user ∈ Users.Set
∧ p.timestamp > UserT imestamps.Get(p.user).max()

}
▷ the post needs to (1) survive in the add set,

▷ (2) be added by a recognized user after the user was added

function Merge (replica)
Users← Users ∪ replica.Users ▷ union operator is defined for 2PSet
Posts← Posts ∪ replica.Posts
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Algorithm 3 Multiplayer2DPhysics
state:

history : HashGraph

interface:
signal Drive (id : Player, dv : Vec2) ▷ Vec2 is a 2d vector of numbers
signal Tick (id : Player)
function GetP layerPhysicsStates ()→Map<Player⇒Vec2>, Map<Player⇒Vec2>

▷ One map for positions, the other map for velocities

on signal Drive
history.Add(Drive(id, dv))

on signal Tick
history.Add(Tick(id))
_EnforceConstraints()

function _EnforceConstraints
P, V ← GetP layerPhysicsStates()
if ¬_hasOverlap(P ) return ▷ _hasOverlap checks for overlapping circles
Vcomp ← _ComputeCompensation(P, V )
∀(id, v) ∈ Vcomp {

history.Add(Compensate(id, v))
}

function GetP layerPhysicsStates
operations← history.serialize(Compensate > Drive, T ick)

▷ serialize by topological sort; Compensate wins in case of concurrency
P ← InitialP layerPositions
V ← InitialP layerV elocities
∀op ∈ operations {

type(op) = Drive⇒ V [op.id]← V [op.id] + op.dv
type(op) = Compensate⇒ V [op.id]← op.v
type(op) = Tick ⇒ P [op.id]← P [op.id] + V [op.id] ∗DT

▷ DT is the constant time difference
}
return P, V

function Merge (replica)
history ← history ∪ replica.history ▷ union operator is defined for HashGraph
_EnforceConstraints()

10



Topology Protocol: A Distributed System Protocol for the Open Metaverse

We adopt the compensation technique to enforce both the no-overlap constraint and the perfect
elastic collision constraint. A new type of operation is introduced, Compensate, which directly
sets the velocities of the colliding circles to new values in order to repair constraint violation. To
ensure convergence, we also introduce the semantics that Compensate wins in case it is concurrent
to Drive or Tick that attempts to mutate the velocities of the same circles. Many approaches exist for
computing these compensating velocity values, such as the sequential impulse approach [21, 22]
and the Linear Complementarity Problem (LCP) approach [23, 24]. The details of these approaches
are outside of the scope of this paper. This construction has a number of issues, including tunneling
(i.e., when two objects pass through each other without overlapping at any tick) and players ticking
at different rates. How to modify the construction to handle these issues is beyond the scope of this
paper.

Algorithm 3 shows the pseudocode of a blueprint named Multiplayer2DPhysics, illustrating the
construction above. By having _ComputeCompensation a fully deterministic procedure, we
can ensure that all honest replicas will generate the exact same compensations, guaranteeing
convergence.

8 Interaction methods

Topology Protocol defines a set of methods, or simply verbs, for nodes to interact with a given CRO.
At the core of the protocol is the PubSub model for nodes in P2P networks to subscribe to CROs and
publish updates on them asynchronously. CROs are identified as PubSub groups or topics. Nodes
only subscribe to CROs they are interested in. This keeps CROs loosely coupled and helps reduce
memory and bandwidth requirement for operating nodes. In contrast, every network participant of
a blockchain is by default "subscribed" to all smart contracts. Figure 5 illustrates this interaction
pattern.

The set of core interaction methods and their semantics is as follows:

1. CREATE: to create a new CRO. Under the hood, a PubSub group (topic) is created for the
new CRO.

2. UPDATE: to perform an update operation on a given CRO. The update is published to the
corresponding PubSub group.

3. SUBSCRIBE: to subscribe to all updates performed on a given CRO. The node adds the
corresponding PubSub group to its groups of interest.

4. UNSUBSCRIBE: to unsubscribe and stop receiving updates on a given CRO. The node
removes the corresponding PubSub group from its groups of interest.

5. SYNC: to reconcile the differences in operation histories (hash graphs) of a given CRO
between the local one and a remote one. The SYNC method has two main purposes: for a
new node to bootstrap into an existing CRO, and as an out-of-band synchronization method
besides P2P gossiping.

SYNC can take a long time to complete when a node is bootstrapping into a CRO with a large
history. This can be viewed as a problem of set reconciliation. One common approach is to exchange
bloom filters to reduce the message complexity of the sync process. A more promising approach
has constant overhead even when reconciling sets with very large differences [25].
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Figure 5: Alice, Bob, and Charlie are subscribed to CRO D. Alice, Bob, Dave, and Eve are
subscribed to CRO B. All nodes are connected peer-to-peer.

9 Operation life cycle

The life cycle of a CRO operation differs significantly from a blockchain transaction. When a node
performs a write (update) by generating an operation on a CRO, the operation is added to the node’s
local copy of the CRO’s hash graph immediately. A node reads a CRO state by serializing the node’s
local copy of the CRO’s hash graph. If a node performs a write and a subsequent read immediately,
the read is guaranteed to observe the write. In other words, CRO provides highly available operations
and guarantees low latency [26]. In contrast, blockchains are not highly available. A blockchain
transaction becomes available only after it is included in a block that is proposed, verified and
acknowledged by a threshold amount of network participants.

10 Snapshot

A CRO snapshot is a single hash graph that represents an agreement among the CRO’s replicas. It
serves multiple purposes:

1. It acts as a "state save" that may be worth persisted (e.g., on IPFS [27]).

2. It can be used to generate irreversible transactions on blockchains.

The computation of snapshots faces several problems. We must avoid involving "all nodes" in the
algorithm: unanimity can be very problematic due to network conditions, dynamic membership,
and Byzantine behavior. The algorithm needs to run concurrently to the underlying CRO activities
without hindering or suspending them. The algorithm must complete with reasonable bandwidth
consumption, thus the nodes involved must not send entire replicas over the wire.
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Our current solution builds on threshold logical clock (TLC) [28] as a decentralized pacemaker,
on top of which Byzantine consensus can be reached. Each CRO has its own TLC operated by its
subscriber nodes. When a node is ready to advance the TLC tick, it proposes the hashed frontier
F∗ of its own hash graph by broadcasting it to other subscribers. Instead of unanimity, the tick
advances by threshold amounts of subscriber nodes signing and acknowledging messages. Three
consecutive ticks can be used to form a consensus round, yielding a snapshot. The process runs
continuously, allowing snapshots to be taken periodically.

CRO snapshots remain an active area of research. The algorithms and their configurability supported
by the protocol remain to be determined through the protocol development process.

11 Compaction

Grow-only hash graphs are problematic. Unbounded memory is needed, and large graphs take
longer to bootstrap. Compaction serializes the state of a CRDT by applying the operations carried
by a portion of the hash graph before pruning that portion away. Compaction discards causal
information and thus is perfectly safe only when performed over vertices that will never be the
causal dependencies of any future operations.

However, perfectly safe compaction can be impractical. To be certain that a vertex V is perfectly
safe to drop, a node needs to receive a vertex from every other node that causally depends on V [29].
This involves the notion of "all nodes", our usual suspect. Our current solution is to use the TLC
consensus rounds to drive compaction. Each round yields a hash graph, whose frontier F comprises
vertices that are considered causally stable. All preceding vertices can be compacted. The CRO’s
state is forwarded by applying the operations of those compacted vertices in a linear order obtained
from topological sort. Figure 6 illustrates this process.

Figure 6: Compaction is performed on the subgraph containing vertices A,B,C,D that precedes
the frontier F of the hash graph decided by consensus. The vertices in the frontier F of the hash
graph before compaction are marked with asterisks ∗, which form the origin O of the hash graph
after compaction. Sn+1 is computed by applying the operations in the subgraph on Sn in a linear
order obtained from topological sort.

Unsafe compaction is named as such because it may drop causal information in the hash graph
that is needed to recognize the causality of operations that have yet to arrive from the network.
Thus, operations with unrecognizable causality could come from both honest and Byzantine
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nodes. Existing approaches from Tusk [30] and Bullshark [31] choose to re-inject transactions
in a later consensus round. These approaches aim to preserve some notion of fairness, ensuring
that transactions generated by correct nodes are eventually delivered to all other correct nodes.
However, re-injected transactions lose their original causal dependencies, requiring rewriting on top
of the hash graph frontier from the previous consensus round. A consistent, deterministic policy for
rewriting dependencies is needed. Compaction remains an active area of research.

Revisiting the snapshot problem, we can see why producing grow-only snapshots is undesirable.
Using compaction, we can shrink the size of a snapshot. This is particularly valuable when snapshots
are to be stored on blockchains, where storage is expensive.

By leveraging recursive zero-knowledge proofs [32], it is possible to produce compacted snapshots
that are verifiable, which are useful in scenarios where trust needs to be minimized. A compacted
snapshot is verifiable when anyone can verify that (1) consensus was reached correctly (2) com-
paction was performed correctly. For the consensus part, we can require the proposals in each round
to contain the hash of the agreed upon proposal and the aggregated signatures from the previous
round. This effectively forms a chain. Verifying the aggregated signatures at the tip of the chain
verifies the entire chain. For the compaction part, we can require the blueprint to be executable
by a provable VM such as Cairo [33], RISC0 [34], or Valida [35]. The state forwarding step of
compaction can be proven recursively, yielding a recursive proof that sits alongside the snapshot.

12 Access control

Access control is important for multiplayer applications. Social and communal spaces are much
more useful when fine-grained permissions can be assigned to participants. Common access control
models include level-based (lattice-based) [36] and role-based ones [37]. It gets tricky when a
CRO’s access control logic is specified within itself or another CRO, due to eventual consistency.
What happens when an operation that revokes the access role of a participant is concurrent to an
operation generated by the same participant that depends on having the very role assigned?

The core issue here is conflict resolution strategies that involve permission changes. A promising
solution is proposed in [38], where both permission roles or levels and the causal order among
operations are taken into account to topologically sort a hash graph. The solution works under
the assumption that participants with higher permission roles or levels are not attackers. Another
promising direction is to leverage the TLC to establish a linear order between permission-changing
operations and permission-dependent operations. A CRO may require that permission-changing
operations remain ineffective until the next TLC tick.

13 Security

Security is a critical aspect of CROs. We consider three threat models for CROs and explore
potential solutions.

13.1 Hash graph pollution

Hash graphs can be polluted by vertices with garbage payload such as invalid operations. When
receiving a new vertex, a node can validate its operation before adding it to the local hash graph.
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The nodes that published bad operations can be banned. If an operation can be validated atomically,
we can be certain that all honest nodes will reach the same conclusion. It is trickier when the validity
of the operation depends on the operations that happened before it. In this case, we can define
operation validity as a function of the operation itself and all operations that can be transitively
reached through the causal dependencies in the hash graph [16].

13.2 Equivocation

Equivocation occurs when a node, assumed to be a single-threaded process, generates concurrent
operations. An honest node can detect that another node has generated concurrent operations. The
honest node may choose to remove the corresponding bad vertices from its hash graph, ban the
Byzantine node, and expect all other honest nodes to do the same. However, downstream vertices
that causally depend on these bad vertices may have been generated. It is not obvious how to graft
these downstream vertices back to the hash graph. Equivocation tolerance remains an active area of
research.

13.3 Backdated dependencies

We consider this as the trickiest threat model: when nodes report dependencies that are older than
the vertices in the frontier. The question is how backdated dependencies can be reliably detected by
all honest nodes. A vertex carrying correct dependencies but arriving late due to network delays
is indistinguishable from a vertex with backdated dependencies. One promising direction is to
leverage the TLC as it introduces a notion of linear time. Denote the frontier of the hash graph
from n consensus rounds ago as F−n. A CRO can stipulate that a vertex should not report causal
dependencies that causally precede any of the vertices in F−n with n carefully chosen, otherwise
the vertex will be handled according to some policy that is applied consistently across all honest
nodes. As such, the TLC serves as a security clock for the CRO, whose F−n serves as the backstop
for backdated dependencies.

14 Decentralized random access memory

A compelling perspective on Topology Protocol is its ability to power a decentralized network that
functions as a "decentralized Random Access Memory" (dRAM). The following properties of the
protocol support this perspective:

1. Random access. Users can synchronize on any CROs of interest without having to syn-
chronize every single CRO in the system, contrary to smart contracts on blockchains. This
access pattern reduces the resource requirement of running a protocol node, making it more
accessible for users to participate in the network.

2. Closeness to compute. We envision that most users of CRO-powered applications will
operate nodes on their devices, holding CRO replicas locally. In other words, the protocol
champions the principles of local-first software [7]. This approach reduces latency, enhances
privacy, and improves both scalability and resilience by "load-balancing" across user devices.
In contrast, most blockchain users access smart contracts via centralized RPC nodes, not
unlike the access pattern of most cloud apps. This property is analogous to the role random
access memory serves in a memory hierarchy.
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3. Ephemerality. Persistence of CROs is out of scope of the protocol. The protocol expects the
nodes to be ephemeral. Their states are volatile from the system’s perspective, corresponding
to the volatility of RAM. The data movement between Topology nodes and persistence
providers is analogous to the data movement between RAM and disk storage which is
non-volatile.

Decentralized RAM has the potential to enable a new class of decentralized applications that can
operate more dynamically and responsively than blockchain-based applications.

15 Conclusion

In this paper, we introduced CRO and Topology Protocol for P2P real-time multiplayer applications.
CRDT is a natural choice for such use cases, and the use of hash graphs allows capturing causality
among operations while tolerating Byzantine faults. CRO provides the programmability of common
object systems and encapsulates coordination-free replication strategies. Topology Protocol specifies
a set of interaction methods for CROs to be created, updated, subscribed to, unsubscribed from,
and synchronized. Their semantics correspond to behavior on the underlying P2P networks under
the publish/subscribe model. Snapshot, compaction, access control, and threat models of CROs
were addressed. Nodes that implement Topology Protocol keep replicas of CROs locally, facilitate
persistence without being primarily responsible for it, and disseminate CRO updates only to nodes
that are interested in them. As such, a P2P network comprised of such nodes effectively works as a
decentralized RAM.
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